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» Out-of-Distribution (OOD) generalization is to train on
sets of domains, and generalize to unseen domains.

* Asthe above figure shows, generalization to any
domains is impossible. We lack theories of when we
can guarantee generalization (OOD — learnable).

* |ntuition: the extent to which the invariance of
informative feature is preserved, determines OOD
learnability. We build a framework to describe OOD
learnability, bound OOD generalization error based on
it, and propose an effective model selection algorithm.
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Our Framework (Informal)

* Eavail € &4 are two sets of domains. We train on
Eavail, and (hope to) generalize to & ;;.

* Hypothesis Space: f = g o h, where h is d-dimensional
feature extractors, and g is top classifier.

* For 1-dim feature ¢, define Py = Prob(¢(X°|Y = y)).

* Goal: minimizes maximum loss of f in all domains, i.e.,
L(f,€) = max£(f,e).
e

** Variation of ¢ across domain set &:

V(p,E) = dist (P¢, PE
(¢, E) max max dis (B, Py )

** Informativeness of ¢ across domain set &:

[(¢p,E) = avg mindist (P¢, P5))
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“* 00D Learnability: (€ ,,4i1, Eqr1) is (s(+), §)-learnable, if
for all ¢ € & satisfying (P, E,pqi1) = 0, we have
S(V(¢» gavail)) > V(p, Ean)-
Here s(-) is a special type of monotonically increasing
function, which we call expansion function.

Theorems and Model Selections

* We prove that OOD generalization error can be
bounded with our framework.

* Main Theorem: Under some conditions, if the problem
is (s(+),I(h, €,y4i1))-learnable, then

CXZ
L(f: gall) o L(f: gavail) <0 (S(V(h: gavail))(a-l_d)z)
* Lower Bound: Exists a (s(+), §)-learnable problem,
where the optimal classifier f with V(h, €,,4:1) = € has

L(f,Eqn) — LU, Eqvair) = (S(V(h: gavail)))

* We also propose a model selection algorithm, and it

outperforms other selection methods:
Algorithm 1: Model Selection

Input: available dataset X,,4i1 = (Xtrain, Xvai), candidate models set M, var _acc_rate rg.
for f =goh in M do

for i in |d] do

‘ V; Max, .y yesye ey, .., Lotal Variation(P(¢¢|y), P(¢¢ |y)); >Use GPU KDE

end

Vy < mean;¢ g V;

Accs < compute validation accuracy of f using X,q;

end

Return argmax .\ (Accy — roVy)
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Env A C P S avg acc inc
PACS Val 85.20%  80.42% 96.17% 77.86% | 84.91% -

Ours | 88.72% 81.74% 96.83% 79.00% | 86.57% | 1.66%71

Env A C P R aveg acc inc

OfficeHome | Val | 61.85% 55.56%  74.72% 76.25% | 67.09% -
Ours | 65.76%  55.07%  75.20% 76.31% | 68.09% | 1.00%7
Env C L S \Y avg acc inc
VLCS Val | 97.46%  64.83% 69.50%° 70.97% | 75.69% -
Ours | 97.81% 66.98% 69.50% 70.97% | 76.32% | 0.63%7

[1] H Venkateswara, et al. Deep hashing network for
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