## Towards a Theoretical Framework of Out-of-Distribution Generalization

Haotian Ye<sup>1</sup>, Chuanlong Xie<sup>2</sup>, Tianle Cai<sup>1</sup>, Ruichen Li<sup>1</sup>, Zhenguo Li<sup>2</sup>, Liwei Wang<sup>1</sup>

<sup>1</sup>Peking University; <sup>2</sup>Huawei Noah's Ark Lab



- Out-of-Distribution (OOD) generalization is to train on sets of domains, and generalize to unseen domains.
- As the above figure shows, generalization to any domains is impossible. We lack theories of **when we** can guarantee generalization (OOD learnable).
- Intuition: the extent to which the invariance of informative feature is preserved, determines OOD learnability. We build a framework to describe OOD learnability, bound OOD generalization error based on it, and propose an effective model selection algorithm.

## Our Framework (Informal)

- $\mathcal{E}_{avail} \subset \mathcal{E}_{all}$  are two sets of domains. We train on  $\mathcal{E}_{avail}$ , and (hope to) generalize to  $\mathcal{E}_{all}$ .
- Hypothesis Space:  $f = g \circ h$ , where h is d-dimensional feature extractors, and g is top classifier.
- For 1-dim feature  $\phi$ , define  $P_y^e = \text{Prob}(\phi(X^e|Y=y))$ .
- Goal: minimizes maximum loss of f in all domains, i.e.,  $\mathcal{L}(f,\mathcal{E}) \triangleq \max_{e \in \mathcal{E}} \ell(f,e).$
- **\Leftrightarrow Variation** of  $\phi$  across domain set  $\mathcal{E}$ :

$$V(\phi, \mathcal{E}) = \max_{y \in Y} \max_{e,e' \in \mathcal{E}} \operatorname{dist}(P_y^e, P_y^{e'})$$

 $\clubsuit$  Informativeness of  $\phi$  across domain set  $\mathcal{E}$ :

$$I(\phi, \mathcal{E}) = \underset{y \neq y'}{\text{avg min dist}} (P_y^e, P_{y'}^e)$$

**\*OOD Learnability**:  $(\mathcal{E}_{avail}, \mathcal{E}_{all})$  is  $(s(\cdot), \delta)$ -learnable, if for all  $\phi \in \Phi$  satisfying  $I(\phi, \mathcal{E}_{avail}) \geq \delta$ , we have  $s(V(\phi, \mathcal{E}_{avail})) \geq V(\phi, \mathcal{E}_{all})$ .

Here  $s(\cdot)$  is a special type of monotonically increasing function, which we call *expansion function*.

## Theorems and Model Selections

- We prove that OOD generalization error can be bounded with our framework.
- Main Theorem: Under some conditions, if the problem is  $(s(\cdot), I(h, \mathcal{E}_{avail}))$ -learnable, then

$$\mathcal{L}(f, \mathcal{E}_{all}) - \mathcal{L}(f, \mathcal{E}_{avail}) \leq O\left(s(V(\boldsymbol{h}, \mathcal{E}_{avail}))^{\frac{\alpha^2}{(\alpha+d)^2}}\right)$$

- Lower Bound: Exists a  $(s(\cdot), \delta)$ -learnable problem, where the optimal classifier f with  $V(\boldsymbol{h}, \mathcal{E}_{avail}) = \varepsilon$  has  $\mathcal{L}(f, \mathcal{E}_{all}) \mathcal{L}(f, \mathcal{E}_{avail}) \geq \Omega\left(s(V(\boldsymbol{h}, \mathcal{E}_{avail}))\right)$
- We also propose a **model selection algorithm**, and it outperforms other selection methods:

## Algorithm 1: Model Selection Input: available dataset $\mathcal{X}_{avail} = (\mathcal{X}_{train}, \mathcal{X}_{val})$ , candidate models set $\mathcal{M}$ , var\_acc\_rate $r_0$ . for $f = g \circ h$ in $\mathcal{M}$ do | for i in [d] do | $\hat{\mathcal{V}}_i \leftarrow \max_{y \in \mathcal{Y}, \mathcal{X}^e \neq \mathcal{X}^{e'} \in \mathcal{X}_{avail}}$ Total Variation( $\mathbb{P}(\phi_i^e|y), \mathbb{P}(\phi_i^{e'}|y)$ ); Duse GPU KDE end | $\mathcal{V}_f \leftarrow \max_{i \in [d]} \hat{\mathcal{V}}_i$ | Acc\_f $\leftarrow$ compute validation accuracy of f using $\mathcal{X}_{val}$ end Return $\arg\max_{f \in \mathcal{M}} (\mathrm{Acc}_f - r_0 \mathcal{V}_f)$

|                                      | 1.0 -                 | $\delta = 0$                                     | 1.0 -   | $\delta = 0.15$                                             |             | = 0.30                           | 10-     | $\delta = 0.45$                                             | - 1.0 |
|--------------------------------------|-----------------------|--------------------------------------------------|---------|-------------------------------------------------------------|-------------|----------------------------------|---------|-------------------------------------------------------------|-------|
| Features' $V$ and $I$ (lightness) in | 0.8 -                 |                                                  | 0.8 -   |                                                             | 0.8 -       |                                  | 0.8 -   |                                                             | - 0.8 |
| Office-Home [1].                     | φ, ε <sub>all</sub> ) |                                                  | 0.6 -   |                                                             | 0.6 -       |                                  | 0.6 -   |                                                             | - 0.6 |
| Larger $\delta$                      | 2 0.4 -               |                                                  | 0.4 -   |                                                             | 0.4 -       |                                  | 0.4 -   |                                                             | - 0.4 |
| corresponds to flatter $s(\cdot)$ .  | 0.2 -                 | • feature                                        | 0.0 -   | s function feature                                          | 0.2 -       | s function feature               | 0.2 -   | s function feature                                          | - 0.2 |
|                                      | 0.0 0.2               | $\mathcal{V}$ ( $\phi$ , $\mathcal{E}_{avail}$ ) | 0.0 0.2 | $\mathcal{V}$ ( $oldsymbol{\phi}$ , $\mathcal{E}_{avail}$ ) | 0.0 0.2 0.4 | $\phi$ , $\mathcal{E}_{avail}$ ) | 0.0 0.2 | $\mathcal{V}$ ( $oldsymbol{\phi}$ , $\mathcal{E}_{avail}$ ) | - 0.0 |

|            | Env  | A            | $\mathbf{C}$           | P                      | S                      | avg    | acc inc |
|------------|------|--------------|------------------------|------------------------|------------------------|--------|---------|
| PACS       | Val  | 85.20%       | 80.42%                 | 96.17%                 | 77.86%                 | 84.91% | _       |
|            | Ours | 88.72%       | 81.74%                 | $\boldsymbol{96.83\%}$ | 79.00%                 | 86.57% | 1.66%↑  |
| OfficeHome | Env  | A            | C                      | P                      | R                      | avg    | acc inc |
|            | Val  | 61.85%       | $\boldsymbol{55.56\%}$ | 74.72%                 | 76.25%                 | 67.09% | _       |
|            | Ours | 65.76%       | 55.07%                 | 75.20%                 | $\boldsymbol{76.31\%}$ | 68.09% | 1.00%↑  |
| VLCS       | Env  | $\mathbf{C}$ | ${ m L}$               | S                      | V                      | avg    | acc inc |
|            | Val  | 97.46%       | 64.83%                 | $69.50\%^{6}$          | $\boldsymbol{70.97\%}$ | 75.69% | _       |
|            | Ours | 97.81%       | 66.98%                 | 69.50%                 | 70.97%                 | 76.32% | 0.63%↑  |

[1] H Venkateswara, et al. Deep hashing network for unsupervised domain adaptation.



