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Introduction

Spurious Correlations

CelebA hair color dataset
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Examples 4 ;}
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L. Non-blond Non-blond Blond Blond
Description woman man woman man
Class Label 0 0 1 1
# Train data 71629 (44%) 66874 (41%) 22880 (14%) 1387 (1%)
# Val data 8535 8276 2874 182
Target: hair color; Spurious feature: gender; Minority: G4

@ Real-world datasets are riddled with spurious correlations.

@ The goal is to learn a model in training environments with spurious
correlations, such that it performs well in test environments where the
correlations are broken.

@ This is challenging as we do not explicitly know which features are spurious
and which are core.
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Introduction

A New Strategy: Last Layer Retraining

Training Data Train ERM BG-Based Reweighting FG-Based

Feature Extractor Prediction Dat: Prediction
R
W

Spurious: BG

DFR

Core: FG Retrain linear layer
(3 BG Features O FG Features Large weights ~ =seeees Small weights)

Figure: LLR pipeline from Kirichenko et al. (2022).

@ Recently, it has been found that ERM still learns the core features under
spurious correlations, despite its test performance being bad.
o A new strategy “last layer retraining” (LLR): learn features in training
environments, and retrain the last layer (linear probe) in test environments.
o Less demanding and more effective than OOD generalization;
e More applicable and computationally efficient than general domain adaptation.
e However, this understanding is incomplete.
AISTATS 2023 4/18

Haotian Ye (Peking Unversity) Freeze then Train


https://arxiv.org/abs/2204.02937

Our Motivation: When and Why LLR works
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o We empirically found that ERM only learns the core features (thus
performing well in LLR) when the noise of core features is much smaller than
that of spurious features.

@ Our goal: understand when and why the core features can and cannot be
learned during training and recovered after retraining the last layer.

e Why is noise so important for LLR performance?
e How to make LLR work again under different noise conditions?
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Understanding LLR

© Understanding LLR

Haotian Ye (Peking Unversi

Freeze then Train AISTATS 2023 6/18



Intuition: Why Noises Matter

@ LLR performance is determined by the quality of the learned features.
o ERM typically learns a mixture of different features.

o Importantly, the proportion depends
on the trade-off between
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=== Ncore > Nspurious
@ We formalize this into the next

theorems.

Haotian Ye (Peking Unversity) Freeze then Train AISTATS 2023 7/18



Understanding LLR

A Minimum Theoretical Framework

Consider a two-layer non-convex optimization problem:

@ Model: f(x) = xWb, where W € R¥*™ is the feature learner and b € R™*!
is the last layer.

@ Data: assume the data (x, y) is generated from the following mechanism:

x1~P e ARYM),y = x16 + ecore,

T . .
yy' +e€ Training
Xy = { K Py ERIXdZ,X:(Xl,X2)€R1Xd.

Espu Testing

Here €core € R, €5py € R*% are independent core and spurious noises with
mean zero and variance (covariance matrix) 72, and 72,/ respectively.
o Optimization:

o Training stage: £ (W,b) = 2= 37 (f(x;) — yi)* (gradient flow).

o Testing stage: lie(W) = min E(x,y)wn,, 3 (f(x) — y)?, where W is from the

training stage, and b can be obtained using standard LR techniques.
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Understanding LLR

Theorems: Noises Matter

Neore < Nspu (Informal upper bound)

Under some assumptions, for any 7core < Nspu, any time t,

2
Lre(W(2)) < <1 + 77c20re> erry, + O(t™1),

spu

where errj, is the optimal testing error.

Neore > Nspu (Informal lower bound)

Under some assumptions, for any ncore > Nspu,

t—00 err;_fe

Cee(W(t 2 1
o e ())ZHS;‘;”(M 1 )
P\ 2, |51, W)

where W' is the Moore-Penrose inverse, and a A b takes the minimum over a, b.

Haotian Ye (Peking Unversity) Freeze then Train AISTATS 2023 9/18



Improving LLR Performance
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Algorithm: Freeze then Train (FTT)

@ Takeaway from theorems: features learned in a supervised way are sometimes
biased under certain noise conditions.
@ Intuition: we should also learn features in an unsupervised way.
o Noise in the label mechanism no longer influences learning.
o Preserve features that are useful in the testing stage but are ruled out because
they are less informative than other features w.r.t. labels.
o Algorithm FTT: freezes certain salient features unsupervisedly and then trains
the rest of the features supervisedly.

Spurious Spurious Test
Training Set Training Set Sampled Set

Feature Unsupervised

_—

Supervised Test-Time

Extractor Training Training Linear Probing
L )
T = Unsupervised Learned = Unsupervised Learned
Freeze then Train Spurious Features Core Features
7] Supervised Learned = Supervised Learned
Spurious Features Core Features
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Properties of FTT

FTT Bound (Informal)

Under some assumptions, for almost any 7core, Nspu > 0, any time t,

Lie(WEerT(t)) < erry, + O(t_l).

Compared with ERM, FTT can learn core features even when ncore > 1spy, and

achieves good LLR performance.
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Experiments on Common Benchmarks

e Experiments on Common Benchmarks
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Spurious Correlation: Waterbirds and CelebA

@ We compare the LLR performance of FTT with ERM, IRM, CVaR-DRO and
JTT on Waterbirds and CelebA, two popular spurious correlation benchmarks.

o We explicitly generate noise by flipping labels, with spurious noise equaling
5% and core noise ranging from 0% to 10%.

Dataset Neore (%)

‘Worst Group Accuracy (%)

Average Accuracy (%)

ERM IRM CVaR-DRO JTT  Ours ERM IRM CVaR-DRO JTT  Ours

0 950 953 94.3 933 945 953 955 94.6 94.1 949

2 93.6 941 93.8 89.7 93.6 942 943 94.0 90.7 942

4 928 928 92.8 85.3 929 932 935 93.2 859 935

Waterbirds 6 90.8 915 77.8 86.8 92.8 913 918 77.8 87.1 929
8 885 888 77.8 82.0 927 89.9  90.1 77.8 827  93.0

10 87.6 819 77.8 78.6 924 894 894 77.8 789 929

Mean 914 917 85.7 86.0 93.1 922 924 859 86.6  93.6

0 950 952 92.9 944 953 972 972 96.0 9.7 972

2 952 952 92.4 91.6  95.2 972 972 95.9 96.0 972

4 945 942 91.9 927 949 97.1  97.0 95.5 9.4 972

CelebA 6 943 943 91.5 92.0 944 969 969 95.5 96.0  97.0
8 937 938 914 9.4 940 96.7  96.7 95.4 957  96.7

10 924 9238 91.1 80.5 93.1 962 962 95.4 92.1  96.3

Mean 942 942 91.9 90.4  94.5 96.9  96.9 95.6 955 96.9

Table 2: Test-time probing accuracy (%) for four methods on Waterbirds and CelebA, under different core noises 7corc.-
Bold means the best accuracy across four methods. The “Mean” row stands for the average accuracy across 7core. We
repeat all settings 10 times and average the numbers. For worst group accuracy, FTT (ours) can be competitive when 7.oyc
is small and outperform other algorithms by at most 4.5% when 7.0, increases. It can increase accuracy by 1.4% and

0.3% on Waterbirds and CelebA on average.
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Distribution Shift: VLCS, PACS, and Office-Home

Domain A C P S Mean

o We further study FTT in more ERM 892" 932" 958 884 9017
R ] PACS IRM 611 675 817 79.1 724

general distribution shift DRO 919 927 958 913 930
benchmark here there i Ours 927 949 97.9 908 941
enchmarks, where there is no Doman A P R Mo
explicit spurious correlation and Office. ERM 699 699 878 788 766

- Nooe IRM 252 49 693 540 483
noise between features and labels. DRO 728 73.1 885 799 786

. ) Ous 738 737 871 831 794

@ We consider three OOD multi-class Domain  C L S V Men
e ERM 993 750 773 815 833
classification datasets: PACS, VLGS IRM 753 625 595 604 644
VLCS, and Office-Home. DRO  99.6 740 785 818 835

Ours 100.0 76.6 81.1 84.6 85.6

"]
We compare the LLR accuracy of Table 3: Test-time probing accuracy (%) for 4 methods
FTT, ERM, IRM, and Grou p- DRO. on PACS, Office-Home, and VLCS. Rows “Domain” spec-
e . ify which domain among 4 domains is unseen during the
° FTT IS Inltla”y d.eSIgnEd for training stage, therefore used to retrain the last layer. The
spurious correlation benchmarks. “Mean” column stands for the average accuracy across dif-

However. we find that it also works ferent test domain selections, and we bold the highest accu-
i ! racy among 4 methods in each setting. FTT (ours) consis-
well in general OOD problems. tently outperforms other methods by 1.1% on PACS, 0.8%

on Office-Home, and 2.1% on VLCS.
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Conclusion

© Conclusion
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Takeaway

@ We empirically show that ERM only learns the core features under certain
noise conditions.

@ We give a theoretical framework to explain this phenomenon. We point out
that noise is an essential factor, because labels will incentivize the ERM
model to use features with smaller noise.

@ To improve LLR performance, we propose FTT that combines supervised
learning and unsupervised learning.

@ Under spurious correlation and distribution shift benchmarks, FTT
consistently outperforms other purely supervised algorithms.

@ Our code can be found here. Hope you like our work!
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https://github.com/YWolfeee/Freeze-Then-Train

Conclusion

| will be starting CS PhD at Stanford this Fall. Please feel free to contact me if
you find my work interesting! My homepage.

Thanks!
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